
 Demonstration of Competence Module 226A

 Class-based Implementation (with Focus on Delegation)

Version August 2019 Page 1 D.A. Waldvogel & J.Käser

Concept for Demonstrating Competences

As an entry in this module you will be assessed according to your basic knowledge of the module 404 („object-based programming“). This basic knowledge is
assessed by a discussion or a set of questions. When you have passed this basic test, you can start with this competence grid.

The development of your competences is shown through a set of „learning fields“. Within these „learning fields“ you can develop your own ideas and use them
to demonstrate your knowledge, according to the demanded competences. The competence grid is the basis for assessing your expertise throughout this
module. There is a list of themes (tasks) you can do in order to show that you know the competence.

Each „learning field“ relates to a specific competence or combines competences. You assess your work and make sure it relates to the given goals in this
module (refer to the official Module Identification). Your teacher can assist you.

Demonstration of competence: Each student shows the described competences during the module to the teacher. If the teacher assess this as fit, the
competence is signed off accordingly. By working with „learning fields“ you can combine certain competences. Only your
personal work can be assessed. If you use other sources, you must declare and comment this.

Grading: Each competence field 0.25. The test counts as 1/3 to the module.

You can demonstrate the achieved competence in following manner:

• Expert discussion
The student shows that he has achieved the competence by a small expert talk

• Product
The student has a concrete product to show (code, document, diagram, etc.)

• Report
The student keeps a log on his/her activities

You document your progress and your results….

• in a portfolio (ie. repository), whereby they are structured and accessible.

• in a log that you write throughout the module duration.

• if necessary through a planning tool, where you define your next steps (ie for a larger application).

 Demonstration of Competence Module 226A

 Class-based Implementation (with Focus on Delegation)

Version August 2019 Page 2 D.A. Waldvogel & J.Käser

 Demonstration of Competence Module 226A

 Class-based Implementation (with Focus on Delegation)

Version August 2019 Page 3 D.A. Waldvogel & J.Käser

Competence grid for Module 226A Name:_______________________________

Action Goal A 3.0 B 4.0 C 5.0-6.0*

1 OO Design &
UML-Notation
(UML 2.5)

Hz 1.1; 2.1 Hz 1.2; 2.2 Hz
The student can translate requirements into a
design and show how classes cooperate.
He/she knows how to design with a UML class
diagram and can visually represent the
difference between a general association and
composition from an implemented code
example.

Requirements are translated into a useful
design. The design shows differences
between forms of associations.
The student can show the benefits of use
cases (and the difference to unit tests), and
show the difference between a static and
dynamic view of an application (class diagram
vs. sequence-diagram).

Your own larger application has a detailed
design with a UML class diagram and
sequence diagram. The design shows the
progress (planned implementation vs final
status).

2 Implementing a
Class-based
design

Hz 3.1 Hz 3.3 Hz 3.2

The student knows the syntax of OO (class,
object, references) and can show this with
examples. Different collections can be used
accordingly. Exception-Handling is used
correctly and extended (ie. own exceptions).
Threads are known and can be shown by
examples.

Your own code examples show the principle
of Information Hiding. Your examples
demonstrate how classes cooperate and they
show how delegation works (and its benefits).
Further usage of collections are included.
Possible usage of Lambda functions (and why
they can help).

Your own larger application shows a very
good grasp of oo-concepts (with focus on
delegation and aggregation, composition).
Encapsulation is shown in a sound manner.
Classes and methods are well structured.

3 Testing &
Documenting

Hz 4.1, 4.4 Hz 4 Hz 4.1;4.3

The student can write useful test cases for the
code, thereby showing the connection
between use cases and testing. The
difference between blackbox / whitebox
testing is shown. Your code is commented.

The student knows how test-driven
development works and they can show unit
tests for their own examples. Testprotocols
are included for the examples. JavaDoc is
used in addition to the basic commenting in
code. Mock-ups are used when necessary.

Your own application has a large unit test
coverage (90% of functionality). You also
include security tests. Test cases are part of
your project documentation.

4 Method
competence &
Learning
Progress

Hz Hz Hz

You work with a version control tool for code
and documentation. You show your learning
progress by keeping a log. You share tips
and tricks with others in the class by making
them public (ie. presentation).

The student plans his next steps. This is
published and documented. Collaborative
work is visible in the version control tool
(commits, etc.). A blog is kept documenting
your work and progress.

The project is well-documented (with
MarkDown) and shows how you worked in a
team. Agreements (deadlines, milestones)
during coding are kept and documented.

Hz = Handlungsziel (the official action goals in the module ID document)

*grading is according to scope and complexity of your own application. There is a separate checklist as a help.

 Demonstration of Competence Module 226A

 Class-based Implementation (with Focus on Delegation)

Version August 2019 Page 4 D.A. Waldvogel & J.Käser

 Name:_______________________________

Additional Information to the competences

Action Goal A 3.0 B 4.0 C 5.0-6.0

1 OO Design &
UML-Notation
(UML 2.5)

Class diagrams are shown in various levels of
detail (starting from very basic designs to a fine-
level design).

Static and dynamic UML diagrams are shown by
examples. Forms of associations are interprated
in a correct way.

Your design should be detailed and reflect the
actual code. Use your initial version as a base
and produce the final version for comparison.
(note: do not generate the diagrams with a tool!)

 ➔ Use the selection of themes as a starting point for designs.

2 Implementing a
class-based
design

Take your basic knowledge of Java as a starting
point to show examples. Explore further themes
like exception-handling (own classes), threads,
usage of APIs, etc.

Delegation is one of the main themes in this
module. Show in your examples how classes
collaborate. Also show why sometimes
inheritance is a bad solution. What can you do
with Lambda functions?

You own larger application covers the main
aspects of oo-programming (ie clear structure of
what classes should do, delegation of tasks,
collaborative work between classes). Inheritance
is not a priority here, but can be used if
necessary.

 ➔ Use the selection of themes as a base (or point of inspiration). You are free to choose your
own topics for applications / examples.

3 Testing &
Documenting

Use unit-tests to test main features of your
examples. Also explore if mockups are
necessary.

Show how test-driven development works by
using a concrete example.

Your application is thoroughly tested and
documented.

4 Method
competence&
Learning
Progress

