Big O notation

Algorithm running times grow at different rates

Bob is writing a search algorithm for NASA. His algorithm will kick in
when a rocket is about to land on the Moon, and it will help calculate
where to land.

This is an example of how the run time of two algorithms can grow

at different rates. Bob is trying to decide between simple search and
binary search. The algorithm needs to be both fast and correct. On one
hand, binary search is faster. And Bob has only 10 seconds to figure out
where to land—otherwise, the rocket will be off course. On the other
hand, simple search is easier to write, and there is less chance of bugs
being introduced. And Bob really doesn’t want bugs in the code to land

arocket! To be extra careful, Bob decides to time both algorithms with
a list of 100 elements.

Let’s assume it takes 1 millisecond to check one element. With simple
search, Bob has to check 100 elements, so the search takes 100 ms to
run. On the other hand, he only has to check 7 elements with binary
search (log, 100 is roughly 7), so that search takes 7 ms to run, But
realistically, the list will have more like a billion elements. If it does,
how long will simple search take? How long will binary search take?
Make sure you have an answer for each question before reading on.

Running time for
simple search vs.
binary search,
with a list of 100
elements

Bob runs binary search with 1 billion elements, and it takes 30 ms
(log, 1,000,000,000 is roughly 30). “30 ms!” he thinks. “Binary search
is about 15 times faster than simple search, because simple search took
100 ms with 100 elements, and binary search took 7 ms. So simple
search will take 30 x 15 = 450 ms, right? Way under my threshold of

10 seconds”” Bob decides to go with simple search. Is that the right
choice?




dn

12 Chapter 1 | Introduction to algorithms

No. Turns out, Bob is wrong. Dead wrong. The run time for simple
search with 1 billion items will be 1 billion ms, which is 11 days! The
problem is, the run times for binary search and simple search don’t
grow at the same rate.

SIMALE RANARY
_ SEARCH SEARCH
10O ELEMENTS 100 ms 4"‘5 Run times grow at

very different speeds!

- m mm T w E o e o s mmm] o W W m e em

10,000 ELEMENTS AO seconds 14,

——————————————— T - = == = =-

1,000 500,000 ELEMENTS 13,.&5 22 s

That is, as the number of items increases, binary search takes a little
more time to run. But simple search takes a lof more time to run. So

as the list of numbers gets bigger, binary search suddenly becomes a
lot faster than simple search. Bob thought binary search was 15 times
faster than simple search, but that’s not correct. If the list has 1 billion
items, it’s more like 33 million times faster. That’s why it’s not enough
to know how long an algorithm takes to run—you need to know how
the running time increases as the list size increases. That's where Big O

[

notation comes in.

Big O notation tells you how fast an algorithm is. For example, suppose
you have a list of size n. Simple search needs to check each element, so
it will take n operations. The run time in Big O notation is O(n). Where
are the seconds? There are none—Big O doesn't tell you the speed in
seconds. Big O notation lets you compare the number of operations. It
tells you how fast the algorithm grows.




