
Technische Berufsschule Zürich

IT Department | IT | Modul 226 HE19

Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019 1

Inheritance & Polymorphism

What we will learn:

In this session we will look at the OO concept „inheritance“.

We will learn what polymorphism means.

We will also learn the concepts of overloading and overwriting.

Contents

Wrong Programming 2

1.1 Extending a Social-Network Simulator in the wrong way 2
1.1.1 Exercise – Adding an Event Post 2
1.1.2 Exercise – Extending the NewsFeed class with EventPost 2

2 Using Inheritance 4

2.1 Analysis of the wrong solution 4

2.2 Step-by-step to better coding 4
2.2.1 Exercise – create a new Post class as superclass 4
2.2.2 Exercise – Simplifying the NewsFeed Class 5

2.3 Final product 5
2.3.1 Simple print-out and a smarter print-out of attributes 5

2.4 Some Information on Overriding methods 6

3 Exercises for Competences in the First Column 7

3.1 Exercise – Understanding Symbols 7

3.2 Exercise – New Project “Flix-Bus Switzerland” 7

3.3 Exercise – Including inheritance 8

3.4 Alternative Exercise – Your own example 8

3.5 Exercise – Relations 8

3.6 Exercise – Managing your trips 8

3.7 Exercise – Overriding Methods 9

3.8 Exercise –Overloading Methods 9

3.9 Exercise – UML Classdiagram (1A) 9

3.9.1 Exercise – Testing (3A) 9

Technische Berufsschule Zürich

IT Department | IT | Modul 226

2 Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019

Wrong Programming

1.1 Extending a Social-Network Simulator in the wrong way

In order to understand the benefits of inheritance, we’re going program a social network

simulator …. and program it in the wrong way first. We will notice how this approach makes

maintenance and extensions more difficult and complex.

We want a program with following classes:

 MessagePost Class for messages.

 PhotoPost Class for photos.

 NewsFeed Class has a collection of message and photo posts.

Install the classes from the downloaded source folder.

Each post class has a display-method to print details of the post.

1.1.1 Exercise – Adding an Event Post

Extend the SocialNetwork by adding a new type of post:

 EventPost Class for events.

The class has following attributes:

 private String author;

 private long timeStamp;

 private int pages;

 private int likes;

 private ArrayList<String> comments;

Implement the constructor and necessary methods accordingly.

1.1.2 Exercise – Extending the NewsFeed class with EventPost

Now we obviously have to add this new post type to our NewsFeed class.

 private ArrayList<EventPost> events;

Further, we have to initialize this list also in the constructor. And add the necessary methods.

Analysis:

Technische Berufsschule Zürich

IT Department | IT | Modul 226 HE19

Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019 3

Obviously, this approach is very tiring and error-prone.

List down the main problems with this approach:

Technische Berufsschule Zürich

IT Department | IT | Modul 226

4 Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019

2 Using Inheritance

2.1 Analysis of the wrong solution

One main problem is the duplicated code we are adding. Most attributes in all three post

classes are the same.

And we have to extend the NewsFeed class, with code which is repetitive and cumbersome.

Mistakes can happen easily while extending the code. We might even break existing code.

And there’s more: if we decide to change the comment attribute from ArrayList<String>

to ArrayList<Comment> we have to change this at several points in the code.

Idea: When we extend our program, we only want to add the new classes. But we don’t

want to change the remaining classes. For example, when we add a new post class, we

don’t want to change the NewsFeed class.

2.2 Step-by-step to better coding

Inheritance is an important concept in object-orientated programming. Classes can inherit

from other classes. This means a class can inherit attributes and methods from another

class.

In a first step we want to implement a Post class which unifies all shared attributes of the

several post classes. From this super class all post classes will inherit attributes and

methods. If necessary, a post class can have its own special attributes.

This is how inheritance is programmed in Java:

2.2.1 Exercise – create a new Post class as superclass



Subclass Superclass

public class MessagePost extends Post {

}

Technische Berufsschule Zürich

IT Department | IT | Modul 226 HE19

Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019 5

Identify the common attributes of the post classes and add these to a new Post class. This

class is the superclass of all other post classes.

The new structure should look like this:

2.2.2 Exercise – Simplifying the NewsFeed Class

Refactor the NewsFeed class accordingly. We want one ArrayList which deals with all posts.

2.3 Final product

The NewsFeed class only works with the new Post class and does not have any knowledge

of the subclasses.

This will simplify any extensions we do later.

2.3.1 Simple print-out and a smarter print-out of attributes

Make sure that your superclass Post has the display() method.

EventPost PhotoPost

Post NewsFeed

MessagePost

EventPost PhotoPost

Post

MessagePost

...

Technische Berufsschule Zürich

IT Department | IT | Modul 226

6 Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019

a) We want a simple print-out of the general attributes which every post has.

b) Now also include the special attributes of each extended post subclass. What must

you do in the method of the subclass in order to combine both attributes (from

superclass and subclass)?

➔ Show your results to the teacher.

2.4 Some Information on Overriding methods

When printing out attributes you have to see that the superclass and subclasses work

together. Especially you have to make sure that the print-method of the superclass is

overridden in the subclass. You’ll find some tips on this on following websites:

http://docs.oracle.com/javase/tutorial/java/IandI/override.html

https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

Notes

http://docs.oracle.com/javase/tutorial/java/IandI/override.html
https://beginnersbook.com/2014/01/method-overriding-in-java-with-example/

Technische Berufsschule Zürich

IT Department | IT | Modul 226 HE19

Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019 7

3 Exercises for Competences in the First Column

Do following exercises and use the internet to research for definitions or examples.

Exercises 1 – 6 will show that you have understood the basic concept of inheritance and that

you can use overriding and overloading of methods. Exercises 7 and 8 show that you can

draw a design in detail (with IS and HAS relationships) and that you can implement unit-

tests.

3.1 Exercise – Understanding Symbols

Look at following diagrams and use examples from our daily lives (school, work, etc.) to

show the different relationships. Fill in the blanks:

IS-Relation HAS-Relation

3.2 Exercise – New Project “Flix-Bus Switzerland”

We want to implement a small system which simulates a national bus service in Switzerland.

The company “Flix-Bus” offers services to national but also international destinations. (-> see

similar exercise “Airport” in the compendio book).

Our system should have following classes:

Class Responsibility

BusTerminal has all information which bus leaves from which

platform

List of platforms, Name of Terminal

Platform has a number and information about bus type

Platform number, platform size, bus service (national or international),

bus type (small or large), occupied or not occupied

Travel has all specific information about a bus trip

 Destination, departure time, arrival time, national or international

Bus has all information of the bus type

bus type (double decker, single), passenger capacity, comfort (basic or

1st class)

_______ Human _______ Man

Car ________ Battery _______

Technische Berufsschule Zürich

IT Department | IT | Modul 226

8 Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019

➔ Before you start coding, do a design (UML classdiagram) of the relationships

between classes. This is part of competence 1A.

3.3 Exercise – Including inheritance

Flix-bus wants to make sure that the bus terminal can deal with different types of buses. In

order to do this, your system should make a distinction between the vehicles they use. Flix-

bus uses double decker coaches for international destinations and a smaller, single-floored

bus for national destinations.

Be creative and implement a form of inheritance.

Class Responsibility

Vehicle has all basic information about the vehicle

3.4 Alternative Exercise – Your own example

You can also implement your own example to show an interaction between a hierarchy of

classes and a managing or data-pool class which can deal with these different types. Maybe

you want to start be defining some unit test cases: How could you write a unit test before you

have the code?

➔ See also the “Airport” example in the compendio book (see OneDrive folder)

3.5 Exercise – Relations

Implement a main program which instantiates the objects and creates a working object-

hierarchy.

Our application should allow the user to do following:

Check times when bus leaves on platform. The user can also generate a new trip with a bus

and the system checks what platform is available for that time. Implement a text-based user

interface which allows the user to see the schedule. For example: when does the bus leave

for Munich and on which platform?

3.6 Exercise – Managing your trips

Make sure that the platforms are correct for the right buses. All platforms can be used for

national buses, but only a few platforms are big enough to hold international buses.

Technische Berufsschule Zürich

IT Department | IT | Modul 226 HE19

Julian Kaeser | A25-Inheritance_Polymorphism_Composition.docx | 11.11.2019 9

3.7 Exercise – Overriding Methods

One common OO feature is overriding methods. Use method overriding to implement a print-

out.

3.8 Exercise –Overloading Methods

The second common feature is overloading methods. Do some research on this topic. Then

show that you have understood this feature by implementing this in your project.

3.9 Exercise – UML Classdiagram (1A)

You did a design before you started implementation. Now draw a UML-classdiagram which

shows the relationships of your project (in particular IS- and HAS relationships). Use a tool to

do this.

➔ Show your finished design to your teacher.

3.10 Exercise – Testing (3A)

Note down essential test cases which prove that your application works. Get a colleague to

do the testing for you.

Based on a script by Rinaldo Lanza, BBW. Adapted by Julian Käser. Latest version Nov. 2019

